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Local ionospheric models
avallable for RENU?2

Name Grid type Mathematical Possible use
model

F-region and near
topside upflows and
plasma structures

Gemini 2D, dipole (90-3000 km Fluid, Maxwellian
(M. Zettergren) alt.) distribution

Gemini 3D Plasma structures and

3D, Cartesian (90-1000 Fluid, Maxwellian

(M. Zettergren) km alt.) distribution low altitude upflow

Processes

Frictional heating,
transverse heating, and
topside upflow/outflow

Gemini-TIA 2D, dipole (90-20000 km |  Fluid, Bi-Maxwellian
(M. Burleigh) alt.) distribution




Geminl

Modeled
MICA density
cavities

altitude [km]

Each DC electric field
intensification associated with
density depletion

Depletions intermittently
observed during ISR
experiment

Associated with growth
phase and N-S streamer-
related electric fields.

Careful model
decomposition shows
these are due to molecular
ion generation and
enhanced recombination
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Fields and currents for fine-scale modeling

INPUT OUTPUT

— heavy smoothing
30 — moderate smoothing

from mag. data
—heavy smoothing
—moderate smoothing
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The model Is able to mimic the
basic electrostatic structure of the
current systems



Contributions to total current density

Heavily smoothed simulation Moderately smoothed simulation

___total .J” ___total J”

. S div(E) .' X div(E)
grad(}_“.p) E ,' grad(Ep) E
neutral dynamo |

neutral dynamo

Electric field divergence dominates FAC, except near the
up-to-down transition where conductivity gradients and
winds contribute



Gemini 3D

Used to study gradient-drift instability effects on plasma density
cavities [Zettergren, et al 2015Db]




Geminil-TIA

Anizotropic Model
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This model has been used to look at
how the effects of properly including
anisotropy impacts simulated ion
upflows as well as the thermospheric
modulation of ion upflows.

Field Aligned Yelocity (m=,

Self consistently solves the time-dependent,
nonlinear equations of conservation of mass,
momentum, parallel energy, and
perpendicular energy

Seven ion species important to the E-, F-, and
topside ionospheric regions: O* NO*, N,*,
O,*, N*, H*, and e-

Functions at altitudes from the lower E-region
all the way up to several Earth radii

Chemical and collisional interactions: ion-ion
and ion-neutral

Effects of photoionization and electron impact
lonization.



RENUZ2 (Gemini-TIA)
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Data Inputs

- Trajectory

- Processed optical data

- Electron precipitation - vs. t




Model/experiment setup

LOW-RES:

SHI-RES  :

Moving beyond

/ | simple
descriptions of
upflow drivers

—
= i
L
e

N e

= =

= =
|

alfitude [km]

L
=
=

MICA example:

» ISR flows/fields via [Heinselman
and Nicholls, 2008]
« SDI (FPI) winds [Conde et al]
| _ « SDI + filtered allsky imager yields
200 200 100 precipitation [D. Hampton]
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Data driven ion upflow:

. Upflow types: Type-1, type-2, neutral winds, wave-
particle interactions, etc.

- lon and electron responses to time dependent inputs

- Decompose resulting ion upflow to determine primary
driver(s) if many are included










MICA (Gemini)

19 February 2012 at5:41:06.745UT




MICA rocket
campaign: ISR
density depletions

« MICA experiment 2-8 UT, 19 Feb.

2012

* Rocket launch at ~5:41 UT

» Density depletions fairly well
correlated with ion temperature
enhancements

» This matches theoretical
expectations for conversion to
molecular ions and subsequent
recombination in a DCR
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Zettergren, et al 2014



Moving beyond simple descriptions of upflow drivers

* ISR flows/fields via [Heinselman
and Nicholls, 2008]

« SDI (FPI) winds [Conde et al]

« SDI + filtered allsky imager yields
precipitation [D. Hampton]
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Careful model

decomposition shows
these are due to molecular
ion generation and
enhanced recombination
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200 300
time after launch [s]

Density comparisons show basic
consistency



MICA type-1 upflows

v. snapshots ~300s apart in time
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Dynamic forcing can lead to upward transport of well-defined momentum features
Overshoot and downflow are common in model results

If downflow is intense enough it can cause compressional heating and secondary upflows
These responses likely have an effect on seeding of ion outflow.



Fine-scale currents and flows

Model/experiment setup

LOW-RES: 7  /HI-RES
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Precipitation recovered by using
a calibrated 427.8 nm narrow
field imager at VEE (under
apogee): triangulation + modeling
gives characteristic energy and
Intensity gives total energy flux.
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Lynch, et al 2015



Modeled structure of “arc B”
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Fields and currents for fine-
scale modeling

INPUT OUTPUT

—heavy smoothing
30f —moderate smoothing

from mag. data
—heavy smoothing
—moderate smoothing
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field—-aligned current [uA/m?]

The model is able to mimc the basic
electrostatic structure of the current systems



Contributions to total current
density

Heavily smoothed simulation Moderately smoothed simulation

___total .J” __total J”

. S div(E) .' X div(E)
grad(}_“.p) E ,' grad(Ep) E
neutral dynamo |

neutral dynamo

Electric field divergence dominates FAC, except near the
up-to-down transition where conductivity gradients and
winds contribute



lon upflows

Large-scale modeling

150 200 250 300 350 400 450 500 550

time (s)
MICA-driven simulation Fine-scale modeling
| 40 | | | | (near apogee)
_E_ (mV/m)
o, (MW/m?) | .-

—V), rocket (m/s) on | | Fine-scale model (and

— v”fzﬂ above rocket (m/s) 0 | data) shows up flow in
550 300 350 400 UCR and downflow in

time (s) DCR

Zettergren, et al 2014; Fernandes, et al 2016






GEMINI-TIA model description:
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Continuity Equation:

0P =
i + V- (psus) = msPs — Lgp;

= (chemical production + photoionization + impact ionization) - (chemical loss processes)




Momentum Equation:
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Parallel Energy Equation:
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Perpendicular Energy Equation:
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. :S:/ci;al DC Electric
im # ey Field
(mV/m)"2/Hz A
1 0 0
2 0.3 0
3 3.0 0
A 10.0 0
5 0 80
6 0.3 80
7 3.0 80
8 10.0 80
9 0 150
10 0.3 150
11 3.0 150
12 10.0 150
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1) The DC electric field strength heavily influences the low
altitude anisotropy and transverse wave heating dominates
higher altitude responses

2) The stronger the PSD the deeper into the ionosphere a
temperature anisotropy increased is observed



O" Response @ t=600s

Neutral wind comments:
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